1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
use {
    super::*,
    crate::object::*,
    alloc::{sync::Arc, vec, vec::Vec},
    bitflags::bitflags,
    kernel_hal::vm::{
        GenericPageTable, IgnoreNotMappedErr, Page, PageSize, PageTable, PagingError, PagingResult,
    },
    lock::Mutex,
};

bitflags! {
    /// Creation flags for VmAddressRegion.
    pub struct VmarFlags: u32 {
        #[allow(clippy::identity_op)]
        /// When randomly allocating subregions, reduce sprawl by placing allocations
        /// near each other.
        const COMPACT               = 1 << 0;
        /// Request that the new region be at the specified offset in its parent region.
        const SPECIFIC              = 1 << 1;
        /// Like SPECIFIC, but permits overwriting existing mappings.  This
        /// flag will not overwrite through a subregion.
        const SPECIFIC_OVERWRITE    = 1 << 2;
        /// Allow VmMappings to be created inside the new region with the SPECIFIC or
        /// OFFSET_IS_UPPER_LIMIT flag.
        const CAN_MAP_SPECIFIC      = 1 << 3;
        /// Allow VmMappings to be created inside the region with read permissions.
        const CAN_MAP_READ          = 1 << 4;
        /// Allow VmMappings to be created inside the region with write permissions.
        const CAN_MAP_WRITE         = 1 << 5;
        /// Allow VmMappings to be created inside the region with execute permissions.
        const CAN_MAP_EXECUTE       = 1 << 6;
        /// Require that VMO backing the mapping is non-resizable.
        const REQUIRE_NON_RESIZABLE = 1 << 7;
        /// Treat the offset as an upper limit when allocating a VMO or child VMAR.
        const ALLOW_FAULTS          = 1 << 8;

        /// Allow VmMappings to be created inside the region with read, write and execute permissions.
        const CAN_MAP_RXW           = Self::CAN_MAP_READ.bits | Self::CAN_MAP_EXECUTE.bits | Self::CAN_MAP_WRITE.bits;
        /// Creation flags for root VmAddressRegion
        const ROOT_FLAGS            = Self::CAN_MAP_RXW.bits | Self::CAN_MAP_SPECIFIC.bits;
    }
}

/// Virtual Memory Address Regions
pub struct VmAddressRegion {
    flags: VmarFlags,
    base: KObjectBase,
    _counter: CountHelper,
    addr: VirtAddr,
    size: usize,
    parent: Option<Arc<VmAddressRegion>>,
    page_table: Arc<Mutex<dyn GenericPageTable>>,
    /// If inner is None, this region is destroyed, all operations are invalid.
    inner: Mutex<Option<VmarInner>>,
}

impl_kobject!(VmAddressRegion);
define_count_helper!(VmAddressRegion);

/// The mutable part of `VmAddressRegion`.
#[derive(Default)]
struct VmarInner {
    children: Vec<Arc<VmAddressRegion>>,
    mappings: Vec<Arc<VmMapping>>,
}

impl VmAddressRegion {
    /// Create a new root VMAR.
    pub fn new_root() -> Arc<Self> {
        #[cfg(feature = "aspace-separate")]
        let (addr, size) = {
            use core::sync::atomic::*;
            static VMAR_ID: AtomicUsize = AtomicUsize::new(0);
            let i = VMAR_ID.fetch_add(1, Ordering::SeqCst);
            (0x2_0000_0000 + 0x100_0000_0000 * i, 0x100_0000_0000)
        };
        #[cfg(not(feature = "aspace-separate"))]
        let (addr, size) = (USER_ASPACE_BASE as usize, USER_ASPACE_SIZE as usize);
        Arc::new(VmAddressRegion {
            flags: VmarFlags::ROOT_FLAGS,
            base: KObjectBase::new(),
            _counter: CountHelper::new(),
            addr,
            size,
            parent: None,
            page_table: Arc::new(Mutex::new(PageTable::from_current().clone_kernel())), //hal PageTable
            inner: Mutex::new(Some(VmarInner::default())),
        })
    }

    /// Create a kernel root VMAR.
    pub fn new_kernel() -> Arc<Self> {
        let kernel_vmar_base = KERNEL_ASPACE_BASE as usize; // Sorry i hard code because i'm lazy
        let kernel_vmar_size = KERNEL_ASPACE_SIZE as usize;
        Arc::new(VmAddressRegion {
            flags: VmarFlags::ROOT_FLAGS,
            base: KObjectBase::new(),
            _counter: CountHelper::new(),
            addr: kernel_vmar_base,
            size: kernel_vmar_size,
            parent: None,
            page_table: Arc::new(Mutex::new(PageTable::from_current().clone_kernel())),
            inner: Mutex::new(Some(VmarInner::default())),
        })
    }

    /// Create a VMAR for guest physical memory.
    #[cfg(feature = "hypervisor")]
    pub fn new_guest() -> Arc<Self> {
        let guest_vmar_base = crate::hypervisor::GUEST_PHYSICAL_ASPACE_BASE as usize;
        let guest_vmar_size = crate::hypervisor::GUEST_PHYSICAL_ASPACE_SIZE as usize;
        Arc::new(VmAddressRegion {
            flags: VmarFlags::ROOT_FLAGS,
            base: KObjectBase::new(),
            _counter: CountHelper::new(),
            addr: guest_vmar_base,
            size: guest_vmar_size,
            parent: None,
            page_table: Arc::new(Mutex::new(crate::hypervisor::VmmPageTable::new())),
            inner: Mutex::new(Some(VmarInner::default())),
        })
    }

    /// Create a child VMAR at the `offset`.
    pub fn allocate_at(
        self: &Arc<Self>,
        offset: usize,
        len: usize,
        flags: VmarFlags,
        align: usize,
    ) -> ZxResult<Arc<Self>> {
        self.allocate(Some(offset), len, flags, align)
    }

    /// Create a child VMAR with optional `offset`.
    pub fn allocate(
        self: &Arc<Self>,
        offset: Option<usize>,
        len: usize,
        flags: VmarFlags,
        align: usize,
    ) -> ZxResult<Arc<Self>> {
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().ok_or(ZxError::BAD_STATE)?;
        let offset = self.determine_offset(inner, offset, len, align)?;
        let child = Arc::new(VmAddressRegion {
            flags,
            base: KObjectBase::new(),
            _counter: CountHelper::new(),
            addr: self.addr + offset,
            size: len,
            parent: Some(self.clone()),
            page_table: self.page_table.clone(),
            inner: Mutex::new(Some(VmarInner::default())),
        });
        inner.children.push(child.clone());
        Ok(child)
    }

    /// Map the `vmo` into this VMAR at given `offset`.
    pub fn map_at(
        &self,
        vmar_offset: usize,
        vmo: Arc<VmObject>,
        vmo_offset: usize,
        len: usize,
        flags: MMUFlags,
    ) -> ZxResult<VirtAddr> {
        self.map(Some(vmar_offset), vmo, vmo_offset, len, flags)
    }

    /// Map the `vmo` into this VMAR.
    pub fn map(
        &self,
        vmar_offset: Option<usize>,
        vmo: Arc<VmObject>,
        vmo_offset: usize,
        len: usize,
        flags: MMUFlags,
    ) -> ZxResult<VirtAddr> {
        self.map_ext(
            vmar_offset,
            vmo,
            vmo_offset,
            len,
            MMUFlags::RXW,
            flags,
            false,
            true,
        )
    }

    /// Map the `vmo` into this VMAR.
    #[allow(clippy::too_many_arguments)]
    pub fn map_ext(
        &self,
        vmar_offset: Option<usize>,
        vmo: Arc<VmObject>,
        vmo_offset: usize,
        len: usize,
        permissions: MMUFlags,
        flags: MMUFlags,
        overwrite: bool,
        map_range: bool,
    ) -> ZxResult<VirtAddr> {
        if !page_aligned(vmo_offset) || !page_aligned(len) || vmo_offset.overflowing_add(len).1 {
            return Err(ZxError::INVALID_ARGS);
        }
        if !permissions.contains(flags & MMUFlags::RXW) {
            return Err(ZxError::ACCESS_DENIED);
        }
        // TODO: allow the mapping extends past the end of vmo
        if vmo_offset > vmo.len() || len > vmo.len() - vmo_offset {
            return Err(ZxError::INVALID_ARGS);
        }
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().ok_or(ZxError::BAD_STATE)?;
        let offset = self.determine_offset(inner, vmar_offset, len, PAGE_SIZE)?;
        let addr = self.addr + offset;
        let mut flags = flags;
        // if vmo != 0
        {
            flags |= MMUFlags::from_bits_truncate(vmo.cache_policy() as usize);
        }
        // align = 1K? 2K? 4K? 8K? ...
        if !self.test_map(inner, offset, len, PAGE_SIZE) {
            if overwrite {
                self.unmap_inner(addr, len, inner)?;
            } else {
                return Err(ZxError::NO_MEMORY);
            }
        }
        // TODO: Fix map_range bugs and remove this line
        let map_range = map_range || vmo.name() != "";
        let mapping = VmMapping::new(
            addr,
            len,
            vmo,
            vmo_offset,
            permissions,
            flags,
            self.page_table.clone(),
        );
        if map_range {
            mapping.map()?;
        }
        inner.mappings.push(mapping);
        Ok(addr)
    }

    /// Unmaps all VMO mappings and destroys all sub-regions within the absolute range
    /// including `addr` and ending before exclusively at `addr + len`.
    /// Any sub-region that is in the range must be fully in the range
    /// (i.e. partial overlaps are an error).
    /// If a mapping is only partially in the range, the mapping is split and the requested
    /// portion is unmapped.
    pub fn unmap(&self, addr: VirtAddr, len: usize) -> ZxResult {
        if !page_aligned(addr) || !page_aligned(len) || len == 0 {
            return Err(ZxError::INVALID_ARGS);
        }
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().ok_or(ZxError::BAD_STATE)?;
        self.unmap_inner(addr, len, inner)
    }

    /// Must hold self.inner.lock() before calling.
    fn unmap_inner(&self, addr: VirtAddr, len: usize, inner: &mut VmarInner) -> ZxResult {
        if !page_aligned(addr) || !page_aligned(len) || len == 0 {
            return Err(ZxError::INVALID_ARGS);
        }

        let begin = addr;
        let end = addr + len;
        // check partial overlapped sub-regions
        for vmar in inner.children.iter() {
            if vmar.partial_overlap(begin, end) {
                return Err(ZxError::INVALID_ARGS);
            }
        }
        let mut new_maps = Vec::new();
        for map in core::mem::take(&mut inner.mappings) {
            if let Some(new) = map.cut(begin, end) {
                new_maps.push(new);
            }
            if map.size() > 0 {
                inner.mappings.push(map);
            }
        }
        inner.mappings.extend(new_maps);
        for vmar in core::mem::take(&mut inner.children) {
            if vmar.within(begin, end) {
                vmar.destroy_internal()?;
            } else {
                inner.children.push(vmar);
            }
        }
        Ok(())
    }

    /// Change protections on a subset of the region of memory in the containing
    /// address space.  If the requested range overlaps with a subregion,
    /// protect() will fail.
    pub fn protect(&self, addr: usize, len: usize, flags: MMUFlags) -> ZxResult {
        if !page_aligned(addr) || !page_aligned(len) {
            return Err(ZxError::INVALID_ARGS);
        }
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().ok_or(ZxError::BAD_STATE)?;
        let end_addr = addr + len;
        // check if there are overlapping subregion
        if inner
            .children
            .iter()
            .any(|child| child.end_addr() >= addr && child.addr() <= end_addr)
        {
            return Err(ZxError::INVALID_ARGS);
        }
        let length: usize = inner
            .mappings
            .iter()
            .filter_map(|map| {
                if map.end_addr() >= addr && map.addr() <= end_addr {
                    Some(end_addr.min(map.end_addr()) - addr.max(map.addr()))
                } else {
                    None
                }
            })
            .sum();
        if length != len {
            return Err(ZxError::NOT_FOUND);
        }
        // check if protect flags is valid
        if inner
            .mappings
            .iter()
            .filter(|map| map.end_addr() >= addr && map.addr() <= end_addr) // get mappings in range: [addr, end_addr]
            .any(|map| !map.is_valid_mapping_flags(flags))
        {
            return Err(ZxError::ACCESS_DENIED);
        }
        inner
            .mappings
            .iter()
            .filter(|map| map.end_addr() >= addr && map.addr() <= end_addr)
            .for_each(|map| {
                let start_index = pages(addr.max(map.addr()) - map.addr());
                let end_index = pages(end_addr.min(map.end_addr()) - map.addr());
                map.protect(flags, start_index, end_index);
            });
        Ok(())
    }

    /// Unmap all mappings within the VMAR, and destroy all sub-regions of the region.
    pub fn destroy(self: &Arc<Self>) -> ZxResult {
        self.destroy_internal()?;
        // remove from parent
        if let Some(parent) = &self.parent {
            let mut guard = parent.inner.lock();
            let inner = guard.as_mut().unwrap();
            inner.children.retain(|vmar| !Arc::ptr_eq(self, vmar));
        }
        Ok(())
    }

    /// Destroy but do not remove self from parent.
    fn destroy_internal(&self) -> ZxResult {
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().ok_or(ZxError::BAD_STATE)?;
        for vmar in inner.children.drain(..) {
            vmar.destroy_internal()?;
        }
        for mapping in inner.mappings.drain(..) {
            drop(mapping);
        }
        *guard = None;
        Ok(())
    }

    /// Unmap all mappings and destroy all sub-regions of VMAR.
    pub fn clear(&self) -> ZxResult {
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().ok_or(ZxError::BAD_STATE)?;
        for vmar in inner.children.drain(..) {
            vmar.destroy_internal()?;
        }
        inner.mappings.clear();
        Ok(())
    }

    /// Get physical address of the underlying page table.
    pub fn table_phys(&self) -> PhysAddr {
        self.page_table.lock().table_phys()
    }

    /// Get start address of this VMAR.
    pub fn addr(&self) -> usize {
        self.addr
    }

    /// Whether this VMAR is dead.
    pub fn is_dead(&self) -> bool {
        self.inner.lock().is_none()
    }

    /// Whether this VMAR is alive.
    pub fn is_alive(&self) -> bool {
        !self.is_dead()
    }

    /// Get flags of vaddr
    pub fn get_vaddr_flags(&self, vaddr: usize) -> PagingResult<MMUFlags> {
        let guard = self.inner.lock();
        let inner = guard.as_ref().unwrap();
        if !self.contains(vaddr) {
            return Err(PagingError::NotMapped);
        }
        if let Some(child) = inner.children.iter().find(|ch| ch.contains(vaddr)) {
            return child.get_vaddr_flags(vaddr);
        }
        if let Some(mapping) = inner.mappings.iter().find(|map| map.contains(vaddr)) {
            return mapping.query_vaddr(vaddr).map(|(_, flags, _)| flags);
        }
        Err(PagingError::NoMemory)
    }

    /// Determine final address with given input `offset` and `len`.
    fn determine_offset(
        &self,
        inner: &VmarInner,
        offset: Option<usize>,
        len: usize,
        align: usize,
    ) -> ZxResult<VirtAddr> {
        if !check_aligned(len, align) {
            Err(ZxError::INVALID_ARGS)
        } else if let Some(offset) = offset {
            if check_aligned(offset, align) && self.test_map(inner, offset, len, align) {
                Ok(offset)
            } else {
                Err(ZxError::INVALID_ARGS)
            }
        } else if len > self.size {
            Err(ZxError::INVALID_ARGS)
        } else {
            match self.find_free_area(inner, 0, len, align) {
                Some(offset) => Ok(offset),
                None => Err(ZxError::NO_MEMORY),
            }
        }
    }

    /// Test if can create a new mapping at `offset` with `len`.
    fn test_map(&self, inner: &VmarInner, offset: usize, len: usize, align: usize) -> bool {
        debug_assert!(check_aligned(offset, align));
        debug_assert!(check_aligned(len, align));
        let begin = self.addr + offset;
        let end = begin + len;
        if end > self.addr + self.size {
            return false;
        }
        // brute force
        if inner.children.iter().any(|vmar| vmar.overlap(begin, end)) {
            return false;
        }
        if inner.mappings.iter().any(|map| map.overlap(begin, end)) {
            return false;
        }
        true
    }

    /// Find a free area with `len`.
    fn find_free_area(
        &self,
        inner: &VmarInner,
        offset_hint: usize,
        len: usize,
        align: usize,
    ) -> Option<usize> {
        // TODO: randomize
        debug_assert!(check_aligned(offset_hint, align));
        debug_assert!(check_aligned(len, align));
        // brute force:
        // try each area's end address as the start
        core::iter::once(offset_hint)
            .chain(inner.children.iter().map(|map| map.end_addr() - self.addr))
            .chain(inner.mappings.iter().map(|map| map.end_addr() - self.addr))
            .find(|&offset| self.test_map(inner, offset, len, align))
    }

    fn end_addr(&self) -> VirtAddr {
        self.addr + self.size
    }

    fn overlap(&self, begin: VirtAddr, end: VirtAddr) -> bool {
        !(self.addr >= end || self.end_addr() <= begin)
    }

    fn within(&self, begin: VirtAddr, end: VirtAddr) -> bool {
        begin <= self.addr && self.end_addr() <= end
    }

    fn partial_overlap(&self, begin: VirtAddr, end: VirtAddr) -> bool {
        self.overlap(begin, end) && !self.within(begin, end)
    }

    /// return true if vmar contains vaddr, or return false.
    pub fn contains(&self, vaddr: VirtAddr) -> bool {
        self.addr <= vaddr && vaddr < self.end_addr()
    }

    /// Get information of this VmAddressRegion
    pub fn get_info(&self) -> VmarInfo {
        // pub fn get_info(&self, va: usize) -> VmarInfo {
        // let _r = self.page_table.lock().query(va);
        VmarInfo {
            base: self.addr(),
            len: self.size,
            // pg_token: self.page_table.lock().table_phys(),
        }
    }

    /// Get VmarFlags of this VMAR.
    pub fn get_flags(&self) -> VmarFlags {
        self.flags
    }

    /// Dump all mappings recursively.
    pub fn dump(&self) {
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().unwrap();
        for map in inner.mappings.iter() {
            debug!("{:#x?}", map);
        }
        for child in inner.children.iter() {
            child.dump();
        }
    }

    /// Get base address of vdso.
    pub fn vdso_base_addr(&self) -> Option<usize> {
        let guard = self.inner.lock();
        let inner = guard.as_ref().unwrap();
        for map in inner.mappings.iter() {
            if map.vmo.name().starts_with("vdso") && map.inner.lock().vmo_offset == 0x7000 {
                return Some(map.addr());
            }
        }
        for vmar in inner.children.iter() {
            if let Some(addr) = vmar.vdso_base_addr() {
                return Some(addr);
            }
        }
        None
    }

    /// Handle page fault happened on this VMAR.
    ///
    /// The fault virtual address is `vaddr` and the reason is in `flags`.
    pub fn handle_page_fault(&self, vaddr: VirtAddr, flags: MMUFlags) -> ZxResult {
        let guard = self.inner.lock();
        let inner = guard.as_ref().unwrap();
        if !self.contains(vaddr) {
            return Err(ZxError::NOT_FOUND);
        }
        if let Some(child) = inner.children.iter().find(|ch| ch.contains(vaddr)) {
            return child.handle_page_fault(vaddr, flags);
        }
        if let Some(mapping) = inner.mappings.iter().find(|map| map.contains(vaddr)) {
            return mapping.handle_page_fault(vaddr, flags);
        }
        Err(ZxError::NOT_FOUND)
    }

    fn for_each_mapping(&self, f: &mut impl FnMut(&Arc<VmMapping>)) {
        let guard = self.inner.lock();
        let inner = guard.as_ref().unwrap();
        for map in inner.mappings.iter() {
            f(map);
        }
        for child in inner.children.iter() {
            child.for_each_mapping(f);
        }
    }

    /// Clone the entire address space and VMOs from source VMAR. (For Linux fork)
    pub fn fork_from(&self, src: &Arc<Self>) -> ZxResult {
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().unwrap();
        inner.fork_from(src, &self.page_table)
    }

    /// Returns statistics about memory used by a task.
    pub fn get_task_stats(&self) -> TaskStatsInfo {
        let mut task_stats = TaskStatsInfo::default();
        self.for_each_mapping(&mut |map| map.fill_in_task_status(&mut task_stats));
        task_stats
    }

    /// Read from address space.
    ///
    /// Return the actual number of bytes read.
    pub fn read_memory(&self, vaddr: usize, buf: &mut [u8]) -> ZxResult<usize> {
        // TODO: support multiple VMOs
        let map = self.find_mapping(vaddr).ok_or(ZxError::NO_MEMORY)?;
        let map_inner = map.inner.lock();
        let vmo_offset = vaddr - map_inner.addr + map_inner.vmo_offset;
        let size_limit = map_inner.addr + map_inner.size - vaddr;
        let actual_size = buf.len().min(size_limit);
        map.vmo.read(vmo_offset, &mut buf[0..actual_size])?;
        Ok(actual_size)
    }

    /// Write to address space.
    ///
    /// Return the actual number of bytes written.
    pub fn write_memory(&self, vaddr: usize, buf: &[u8]) -> ZxResult<usize> {
        // TODO: support multiple VMOs
        let map = self.find_mapping(vaddr).ok_or(ZxError::NO_MEMORY)?;
        let map_inner = map.inner.lock();
        let vmo_offset = vaddr - map_inner.addr + map_inner.vmo_offset;
        let size_limit = map_inner.addr + map_inner.size - vaddr;
        let actual_size = buf.len().min(size_limit);
        map.vmo.write(vmo_offset, &buf[0..actual_size])?;
        Ok(actual_size)
    }

    /// Find mapping of vaddr
    pub fn find_mapping(&self, vaddr: usize) -> Option<Arc<VmMapping>> {
        let guard = self.inner.lock();
        let inner = guard.as_ref().unwrap();
        if let Some(mapping) = inner.mappings.iter().find(|map| map.contains(vaddr)) {
            return Some(mapping.clone());
        }
        if let Some(child) = inner.children.iter().find(|ch| ch.contains(vaddr)) {
            return child.find_mapping(vaddr);
        }
        None
    }

    #[cfg(test)]
    fn count(&self) -> usize {
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().unwrap();
        inner.mappings.len() + inner.children.len()
    }

    #[cfg(test)]
    fn used_size(&self) -> usize {
        let mut guard = self.inner.lock();
        let inner = guard.as_mut().unwrap();
        let map_size: usize = inner.mappings.iter().map(|map| map.size()).sum();
        let vmar_size: usize = inner.children.iter().map(|vmar| vmar.size).sum();
        map_size + vmar_size
    }
}

impl VmarInner {
    /// Clone the entire address space and VMOs from source VMAR. (For Linux fork)
    fn fork_from(
        &mut self,
        src: &Arc<VmAddressRegion>,
        page_table: &Arc<Mutex<dyn GenericPageTable>>,
    ) -> ZxResult {
        let src_guard = src.inner.lock();
        let src_inner = src_guard.as_ref().unwrap();
        for child in src_inner.children.iter() {
            self.fork_from(child, page_table)?;
        }
        for map in src_inner.mappings.iter() {
            let mapping = map.clone_map(page_table.clone())?;
            mapping.map()?;
            self.mappings.push(mapping);
        }
        Ok(())
    }
}

/// Information of a VmAddressRegion.
#[repr(C)]
#[derive(Debug)]
pub struct VmarInfo {
    base: usize,
    len: usize,
    // pg_token: usize,
}

/// Virtual Memory Mapping
pub struct VmMapping {
    /// The permission limitation of the vmar
    permissions: MMUFlags,
    vmo: Arc<VmObject>,
    page_table: Arc<Mutex<dyn GenericPageTable>>,
    inner: Mutex<VmMappingInner>,
}

#[derive(Debug, Clone)]
struct VmMappingInner {
    /// The actual flags used in the mapping of each page
    flags: Vec<MMUFlags>,
    addr: VirtAddr,
    size: usize,
    vmo_offset: usize,
}

/// Statistics about resources (e.g., memory) used by a task.
#[repr(C)]
#[derive(Default)]
pub struct TaskStatsInfo {
    mapped_bytes: u64,
    private_bytes: u64,
    shared_bytes: u64,
    scaled_shared_bytes: u64,
}

impl core::fmt::Debug for VmMapping {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let inner = self.inner.lock();
        f.debug_struct("VmMapping")
            .field("addr", &inner.addr)
            .field("size", &inner.size)
            .field("permissions", &self.permissions)
            // .field("flags", &inner.flags)
            .field("vmo_id", &self.vmo.id())
            .field("vmo_offset", &inner.vmo_offset)
            .finish()
    }
}

impl VmMapping {
    fn new(
        addr: VirtAddr,
        size: usize,
        vmo: Arc<VmObject>,
        vmo_offset: usize,
        permissions: MMUFlags,
        flags: MMUFlags,
        page_table: Arc<Mutex<dyn GenericPageTable>>,
    ) -> Arc<Self> {
        let mapping = Arc::new(VmMapping {
            inner: Mutex::new(VmMappingInner {
                flags: vec![flags; pages(size)],
                addr,
                size,
                vmo_offset,
            }),
            permissions,
            page_table,
            vmo: vmo.clone(),
        });
        vmo.append_mapping(Arc::downgrade(&mapping));
        mapping
    }

    /// Map range and commit.
    /// Commit pages to vmo, and map those to frames in page_table.
    /// Temporarily used for development. A standard procedure for
    /// vmo is: create_vmo, op_range(commit), map
    fn map(self: &Arc<Self>) -> ZxResult {
        self.vmo.commit_pages_with(&mut |commit| {
            let inner = self.inner.lock();
            let mut page_table = self.page_table.lock();
            let page_num = inner.size / PAGE_SIZE;
            let vmo_offset = inner.vmo_offset / PAGE_SIZE;
            for i in 0..page_num {
                let paddr = commit(vmo_offset + i, inner.flags[i])?;
                //通过GenericPageTable的hal_pt_map进行页表映射
                page_table
                    .map(
                        Page::new_aligned(inner.addr + i * PAGE_SIZE, PageSize::Size4K),
                        paddr,
                        inner.flags[i],
                    )
                    .expect("failed to map");
            }
            Ok(())
        })
    }

    fn unmap(&self) {
        let inner = self.inner.lock();
        // TODO inner.vmo_offset unused?
        self.page_table
            .lock()
            .unmap_cont(inner.addr, inner.size)
            .expect("failed to unmap")
    }

    fn fill_in_task_status(&self, task_stats: &mut TaskStatsInfo) {
        let (start_idx, end_idx) = {
            let inner = self.inner.lock();
            let start_idx = inner.vmo_offset / PAGE_SIZE;
            (start_idx, start_idx + inner.size / PAGE_SIZE)
        };
        task_stats.mapped_bytes += self.vmo.len() as u64;
        let committed_pages = self.vmo.committed_pages_in_range(start_idx, end_idx);
        let share_count = self.vmo.share_count();
        if share_count == 1 {
            task_stats.private_bytes += (committed_pages * PAGE_SIZE) as u64;
        } else {
            task_stats.shared_bytes += (committed_pages * PAGE_SIZE) as u64;
            task_stats.scaled_shared_bytes += (committed_pages * PAGE_SIZE / share_count) as u64;
        }
    }

    /// Cut and unmap regions in `[begin, end)`.
    ///
    /// If it will be split, return another one.
    fn cut(&self, begin: VirtAddr, end: VirtAddr) -> Option<Arc<Self>> {
        if !self.overlap(begin, end) {
            return None;
        }
        let mut inner = self.inner.lock();
        let mut page_table = self.page_table.lock();
        if inner.addr >= begin && inner.end_addr() <= end {
            // subset: [xxxxxxxxxx]
            page_table
                .unmap_cont(inner.addr, inner.size)
                .expect("failed to unmap");
            inner.size = 0;
            inner.flags.clear();
            None
        } else if inner.addr >= begin && inner.addr < end {
            // prefix: [xxxx------]
            let cut_len = end - inner.addr;
            page_table
                .unmap_cont(inner.addr, cut_len)
                .expect("failed to unmap");
            inner.addr = end;
            inner.size -= cut_len;
            inner.vmo_offset += cut_len;
            inner.flags.drain(0..pages(cut_len));
            None
        } else if inner.end_addr() <= end && inner.end_addr() > begin {
            // postfix: [------xxxx]
            let cut_len = inner.end_addr() - begin;
            let new_len = begin - inner.addr;
            page_table
                .unmap_cont(begin, cut_len)
                .expect("failed to unmap");
            inner.size = new_len;
            inner.flags.truncate(new_len);
            None
        } else {
            // superset: [---xxxx---]
            let cut_len = end - begin;
            let new_len1 = begin - inner.addr;
            let new_len2 = inner.end_addr() - end;
            page_table
                .unmap_cont(begin, cut_len)
                .expect("failed to unmap");
            let new_flags_range = (pages(inner.size) - pages(new_len2))..pages(inner.size);
            let new_mapping = Arc::new(VmMapping {
                permissions: self.permissions,
                vmo: self.vmo.clone(),
                page_table: self.page_table.clone(),
                inner: Mutex::new(VmMappingInner {
                    flags: inner.flags.drain(new_flags_range).collect(),
                    addr: end,
                    size: new_len2,
                    vmo_offset: inner.vmo_offset + (end - inner.addr),
                }),
            });
            inner.size = new_len1;
            inner.flags.truncate(new_len1);
            Some(new_mapping)
        }
    }

    fn overlap(&self, begin: VirtAddr, end: VirtAddr) -> bool {
        let inner = self.inner.lock();
        !(inner.addr >= end || inner.end_addr() <= begin)
    }

    fn contains(&self, vaddr: VirtAddr) -> bool {
        let inner = self.inner.lock();
        inner.addr <= vaddr && vaddr < inner.end_addr()
    }

    fn is_valid_mapping_flags(&self, flags: MMUFlags) -> bool {
        self.permissions.contains(flags & MMUFlags::RXW)
    }

    fn protect(&self, flags: MMUFlags, start_index: usize, end_index: usize) {
        let mut inner = self.inner.lock();
        let mut pg_table = self.page_table.lock();
        for i in start_index..end_index {
            let mut new_flags = inner.flags[i];
            new_flags.remove(MMUFlags::RXW);
            new_flags.insert(flags & MMUFlags::RXW);
            inner.flags[i] = new_flags;
            pg_table
                .update(inner.addr + i * PAGE_SIZE, None, Some(new_flags))
                .ignore()
                .unwrap();
        }
    }

    fn size(&self) -> usize {
        self.inner.lock().size
    }

    fn addr(&self) -> VirtAddr {
        self.inner.lock().addr
    }

    fn end_addr(&self) -> VirtAddr {
        self.inner.lock().end_addr()
    }

    /// Get MMUFlags of this VmMapping.
    pub fn get_flags(&self, vaddr: usize) -> ZxResult<MMUFlags> {
        if self.contains(vaddr) {
            let page_id = (vaddr - self.addr()) / PAGE_SIZE;
            Ok(self.inner.lock().flags[page_id])
        } else {
            Err(ZxError::NO_MEMORY)
        }
    }

    /// query vaddr's PhysAddr, PhysAddr, PageSize.
    pub fn query_vaddr(&self, vaddr: usize) -> PagingResult<(PhysAddr, MMUFlags, PageSize)> {
        self.page_table.lock().query(vaddr)
    }

    /// Remove WRITE flag from the mappings for Copy-on-Write.
    pub(super) fn range_change(&self, offset: usize, len: usize, op: RangeChangeOp) {
        let inner = self.inner.try_lock();
        // If we are already locked, we are handling page fault/map range
        // In this case we can just ignore the operation since we will update the mapping later
        if let Some(inner) = inner {
            let start = offset.max(inner.vmo_offset);
            let end = (inner.vmo_offset + inner.size / PAGE_SIZE).min(offset + len);
            if !(start..end).is_empty() {
                let mut pg_table = self.page_table.lock();
                for i in (start - inner.vmo_offset)..(end - inner.vmo_offset) {
                    match op {
                        RangeChangeOp::RemoveWrite => {
                            let mut new_flag = inner.flags[i];
                            new_flag.remove(MMUFlags::WRITE);
                            pg_table
                                .update(inner.addr + i * PAGE_SIZE, None, Some(new_flag))
                                .ignore()
                                .unwrap();
                        }
                        RangeChangeOp::Unmap => {
                            pg_table.unmap(inner.addr + i * PAGE_SIZE).ignore().unwrap();
                        }
                    };
                }
            }
        }
    }

    /// Handle page fault happened on this VmMapping.
    pub(crate) fn handle_page_fault(&self, vaddr: VirtAddr, access_flags: MMUFlags) -> ZxResult {
        let vaddr = round_down_pages(vaddr);
        let (vmo_offset, mut flags) = {
            let inner = self.inner.lock();
            let offset = vaddr - inner.addr;
            (offset + inner.vmo_offset, inner.flags[offset / PAGE_SIZE])
        };
        // error!("page fault: addr = {:x}, access_flag = {:?}, flags = {:?}", vaddr, access_flags, flags);
        if !flags.contains(access_flags) {
            return Err(ZxError::ACCESS_DENIED);
        }
        // 当 PF 发生的时候,如果只要求读权限,则即便可写也现只给读权限。
        // 这是由于 COW 会去掉写权限来在写的时候触发 PF,如果直接把 flags 放进去,会导致 COW 的这个操作失效。
        if !access_flags.contains(MMUFlags::WRITE) {
            flags.remove(MMUFlags::WRITE);
        }
        let paddr = self.vmo.commit_page(vmo_offset / PAGE_SIZE, access_flags)?;
        // error!("paddr = {:x}", paddr);
        let mut pg_table = self.page_table.lock();
        let mut res = pg_table.map(Page::new_aligned(vaddr, PageSize::Size4K), paddr, flags);
        if let Err(PagingError::AlreadyMapped) = res {
            res = pg_table.update(vaddr, Some(paddr), Some(flags)).map(|_| ());
        }
        res.map_err(|_| ZxError::ACCESS_DENIED)?;
        Ok(())
    }

    /// Clone VMO and map it to a new page table. (For Linux)
    fn clone_map(&self, page_table: Arc<Mutex<dyn GenericPageTable>>) -> ZxResult<Arc<Self>> {
        //这里调用 hal protect 后, protect() 好像会破坏页表
        let new_vmo = self.vmo.create_child(false, 0, self.vmo.len())?;
        let mapping = Arc::new(VmMapping {
            inner: Mutex::new(self.inner.lock().clone()),
            permissions: self.permissions,
            page_table,
            vmo: new_vmo.clone(),
        });
        new_vmo.append_mapping(Arc::downgrade(&mapping));
        Ok(mapping)
    }
}

impl VmMappingInner {
    fn end_addr(&self) -> VirtAddr {
        self.addr + self.size
    }
}

impl Drop for VmMapping {
    fn drop(&mut self) {
        self.unmap();
    }
}

/// The base of kernel address space
/// In x86 fuchsia this is 0xffff_ff80_0000_0000 instead
pub const KERNEL_ASPACE_BASE: u64 = 0xffff_ff02_0000_0000;
/// The size of kernel address space
pub const KERNEL_ASPACE_SIZE: u64 = 0x0000_0080_0000_0000;
/// The base of user address space
pub const USER_ASPACE_BASE: u64 = 0;
// pub const USER_ASPACE_BASE: u64 = 0x0000_0000_0100_0000;
/// The size of user address space
pub const USER_ASPACE_SIZE: u64 = (1u64 << 47) - 4096 - USER_ASPACE_BASE;
/// The default number of user stack pages
pub const USER_STACK_PAGES: usize = 128;

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn create_child() {
        let root_vmar = VmAddressRegion::new_root();
        let child = root_vmar
            .allocate_at(0, 0x2000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
            .expect("failed to create child VMAR");

        // test invalid argument
        assert_eq!(
            root_vmar
                .allocate_at(0x2001, 0x1000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .err(),
            Some(ZxError::INVALID_ARGS)
        );
        assert_eq!(
            root_vmar
                .allocate_at(0x2000, 1, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .err(),
            Some(ZxError::INVALID_ARGS)
        );
        assert_eq!(
            root_vmar
                .allocate_at(0, 0x1000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .err(),
            Some(ZxError::INVALID_ARGS)
        );
        assert_eq!(
            child
                .allocate_at(0x1000, 0x2000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .err(),
            Some(ZxError::INVALID_ARGS)
        );
    }

    /// A valid virtual address base to mmap.
    const MAGIC: usize = 0xdead_beaf;

    #[test]
    #[allow(unsafe_code)]
    fn map() {
        let vmar = VmAddressRegion::new_root();
        let vmo = VmObject::new_paged(4);
        let flags = MMUFlags::READ | MMUFlags::WRITE;

        // invalid argument
        assert_eq!(
            vmar.map_at(0, vmo.clone(), 0x4000, 0x1000, flags),
            Err(ZxError::INVALID_ARGS)
        );
        assert_eq!(
            vmar.map_at(0, vmo.clone(), 0, 0x5000, flags),
            Err(ZxError::INVALID_ARGS)
        );
        assert_eq!(
            vmar.map_at(0, vmo.clone(), 0x1000, 1, flags),
            Err(ZxError::INVALID_ARGS)
        );
        assert_eq!(
            vmar.map_at(0, vmo.clone(), 1, 0x1000, flags),
            Err(ZxError::INVALID_ARGS)
        );

        vmar.map_at(0, vmo.clone(), 0, 0x4000, flags).unwrap();
        vmar.map_at(0x12000, vmo.clone(), 0x2000, 0x1000, flags)
            .unwrap();

        unsafe {
            ((vmar.addr() + 0x2000) as *mut usize).write(MAGIC);
            assert_eq!(((vmar.addr() + 0x12000) as *const usize).read(), MAGIC);
        }
    }

    /// ```text
    /// +--------+--------+--------+--------+
    /// |           root              ....  |
    /// +--------+--------+--------+--------+
    /// |      child1     | child2 |
    /// +--------+--------+--------+
    /// | g-son1 | g-son2 |
    /// +--------+--------+
    /// ```
    struct Sample {
        root: Arc<VmAddressRegion>,
        child1: Arc<VmAddressRegion>,
        child2: Arc<VmAddressRegion>,
        grandson1: Arc<VmAddressRegion>,
        grandson2: Arc<VmAddressRegion>,
    }

    impl Sample {
        fn new() -> Self {
            let root = VmAddressRegion::new_root();
            let child1 = root
                .allocate_at(0, 0x2000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .unwrap();
            let child2 = root
                .allocate_at(0x2000, 0x1000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .unwrap();
            let grandson1 = child1
                .allocate_at(0, 0x1000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .unwrap();
            let grandson2 = child1
                .allocate_at(0x1000, 0x1000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
                .unwrap();
            Sample {
                root,
                child1,
                child2,
                grandson1,
                grandson2,
            }
        }
    }

    #[test]
    fn unmap_vmar() {
        let s = Sample::new();
        let base = s.root.addr();
        s.child1.unmap(base, 0x1000).unwrap();
        assert!(s.grandson1.is_dead());
        assert!(s.grandson2.is_alive());

        // partial overlap sub-region should fail.
        let s = Sample::new();
        let base = s.root.addr();
        assert_eq!(
            s.root.unmap(base + 0x1000, 0x2000),
            Err(ZxError::INVALID_ARGS)
        );

        // unmap nothing should success.
        let s = Sample::new();
        let base = s.root.addr();
        s.child1.unmap(base + 0x8000, 0x1000).unwrap();
    }

    #[test]
    fn destroy() {
        let s = Sample::new();
        s.child1.destroy().unwrap();
        assert!(s.child1.is_dead());
        assert!(s.grandson1.is_dead());
        assert!(s.grandson2.is_dead());
        assert!(s.child2.is_alive());
        // address space should be released
        assert!(s
            .root
            .allocate_at(0, 0x1000, VmarFlags::CAN_MAP_RXW, PAGE_SIZE)
            .is_ok());
    }

    #[test]
    fn unmap_mapping() {
        //   +--------+--------+--------+--------+--------+
        // 1 [--------------------------|xxxxxxxx|--------]
        // 2 [xxxxxxxx|-----------------]
        // 3          [--------|xxxxxxxx]
        // 4          [xxxxxxxx]
        let vmar = VmAddressRegion::new_root();
        let base = vmar.addr();
        let vmo = VmObject::new_paged(5);
        let flags = MMUFlags::READ | MMUFlags::WRITE;
        vmar.map_at(0, vmo, 0, 0x5000, flags).unwrap();
        assert_eq!(vmar.count(), 1);
        assert_eq!(vmar.used_size(), 0x5000);

        // 0. unmap none.
        vmar.unmap(base + 0x5000, 0x1000).unwrap();
        assert_eq!(vmar.count(), 1);
        assert_eq!(vmar.used_size(), 0x5000);

        // 1. unmap middle.
        vmar.unmap(base + 0x3000, 0x1000).unwrap();
        assert_eq!(vmar.count(), 2);
        assert_eq!(vmar.used_size(), 0x4000);

        // 2. unmap prefix.
        vmar.unmap(base, 0x1000).unwrap();
        assert_eq!(vmar.count(), 2);
        assert_eq!(vmar.used_size(), 0x3000);

        // 3. unmap postfix.
        vmar.unmap(base + 0x2000, 0x1000).unwrap();
        assert_eq!(vmar.count(), 2);
        assert_eq!(vmar.used_size(), 0x2000);

        // 4. unmap all.
        vmar.unmap(base + 0x1000, 0x1000).unwrap();
        assert_eq!(vmar.count(), 1);
        assert_eq!(vmar.used_size(), 0x1000);
    }

    #[test]
    #[allow(unsafe_code)]
    fn copy_on_write_update_mapping() {
        let vmar = VmAddressRegion::new_root();
        let vmo = VmObject::new_paged(1);
        vmo.test_write(0, 1);
        vmar.map_at(0, vmo.clone(), 0, PAGE_SIZE, MMUFlags::RXW)
            .unwrap();
        let child_vmo = vmo.create_child(false, 0, 1 * PAGE_SIZE).unwrap();
        // The clone was created after the map, so the two vmo share pages.
        assert_eq!(
            vmo.commit_page(0, MMUFlags::READ),
            child_vmo.commit_page(0, MMUFlags::READ)
        );
        assert_eq!(vmo.test_read(0), 1);
        assert_eq!(child_vmo.test_read(0), 1);
        unsafe {
            assert_eq!((vmar.addr() as *const u8).read(), 1);
        }
        vmo.test_write(0, 2);
        // Here, since the page was copied on write, the actual page used in the vmo should be changed.
        assert_ne!(
            vmo.commit_page(0, MMUFlags::READ),
            child_vmo.commit_page(0, MMUFlags::READ)
        );
        assert_eq!(vmo.test_read(0), 2);
        assert_eq!(child_vmo.test_read(0), 1);
        // The mapping should update to reflect this change.
        // Since we do not have page fault handler in the libOS,
        // so manually simulate the page fault before read to it
        vmar.handle_page_fault(vmar.addr(), MMUFlags::READ).unwrap();
        unsafe {
            assert_eq!((vmar.addr() as *const u8).read(), 2);
        }
    }
}