
RISC-V Privileged Architecture 

Allen Baum 
Esperanto Technologies. 

allen.baum@esperantotech.com 
 

 8th RISC-V Workshop 
Barcelona, Spain 

May 7, 2018 



Introduction to RISC-V Privileged Architecture 

2 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



Why a Privileged Architecture?  

3 

 We need ways of managing shared resources 
- Memory 
- I/O Devices 
- Cores 

 We need ways of protecting shared resources 
- Memory: use virtual memory mapping  
- I/O:          also virtual memory mapping 
- Access permissions: integrated into mapping (or as 

separate functionality) 

 We need ways of insulating implementation details 
- Trapping unimplemented ops for SW emulation 
- Handling external asynchronous events 

-  (IO events, Timer events, SW interrupts from other threads  

- 2 Level address translation for Hypervisor support 

 
 



RISC-V Privileged Architecture Layers 

 Provides clean split between layers of the software stack 
 
 

 
 

 
 ECALL instruction used for the communication 
 All ISA levels designed to support virtualization 

4 

Layer Communicates with via 

Application Application Execution 

Environment (AEE)  

Application Binary 

Interface (ABI) 

Operating 

System  

Supervisor Execution 

Environment (SEE) 

System       Binary 

Interface (SBI) 

Hypervisor Hypervisor Execution 

Environment (HEE) 

Hypervisor  Binary 

Interface (HBI) 

Hardware 



Profiles 

5 

Introduction to RISC-V Privileged Architecture 

5 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



Platform Profile Concept: Some basic profiles 

6 

Profile Modes Trust 
Mem 

Protect 
Other 

Embedded 

without 

Protection 

M 
all 

Trusted 
None 

Low cost:16B each of  

arch. State/timers/counters 

Embedded  

with 

Protection 

M+      

U 

Apps  

untrusted 

Phys Mem 

Protect 

Optional N-extension for 

user int. handling 

Unix-like OS 

capable 

M+  

S+U 

OS 

Trusted 

Vmem 

+ RWX 

Vaddr size options: 

32,39,48b 

Cloud OS 

capable 

M+ 

[V](S+

U) 

Hypervisor 

Trusted 

2-level Vmem 

+ RWX 

Unix+ (Supports >1  OS) 

+new/background CSRs 

See https://github.com/riscv/riscv-platform-specs  

RiscV has rich set of architectural modes & optional features 

A profile is restricted combination of all possible options 

https://github.com/riscv/riscv-platform-specs
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv/riscv-platform-specs
https://github.com/riscv/riscv-platform-specs


Privileges and Modes 

7 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



RISC-V Privilege Modes 

 User & 2+ privileged modes (hierarchical) 
- User (U-mode), normal and virtualized*  (lowest privileges) 
- Supervisor (S-mode), normal and  virtualized*  
- Machine (M-mode)                                              (highest privileges)** 

 Supported combinations of modes: 
- M         (simple embedded systems)  
- M, U        (embedded systems with protection) 
- M, S, U        (systems running Unix-like operating systems) 
- M, [V]S, [V]U   (systems running multiple Oses) 

 Each privileged mode add a few ops, and  
   Control/Status Registers (CSRs) that control operations 

- CSRs accessible only by code running at a specific privilege mode or higher 
- There are (often) multiple CSR copies/views for each mode 

8 

*Virtualized modes for hypervisor support- not covered here 

** A higher (Debug) mode exists: only entered if debug port connected & enabled,  

has separate state saving CSRs, but otherwise much like M-mode 



 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 

Privileged Features: 
Instructions and CSRs 

9 



Mode Specific Instructions 

10 

Privileged Machine (M-mode) & Supervisor (S-mode) add 
instructions to base U-mode ops  
     -  Priv Insts can only be executed from appropriate mode (or higher) 

 All modes 
- ECALL:     generates <curr_mode>environment_call exception 
- EBREAK: generates breakpoint exception 
- FENCE[.I]: synchronizes updates to memory 
- <x>RET: returns from a trap *from* the specified mode 

- SRET  provided only if S-mode is implemented 
- URET provided only if U-mode traps supported (N-extension) 

 S-mode (+M-mode): adds 
- SFENCE.VMA:  synchs updates to implicitly accessed memory 

M-mode: adds 
- WFI: stall the current hart until an interrupt needs service 

- Is a hint only (could be noop,  
           could direct interrupts to this hart) 



Mode Specific CSRs 

11 

 Control/Status Regs (CSRs) have their own address space 
– Direct address mode only 

 Each hart has its own set of 4K CSRs (1K/mode) 
 CSRs are accessed by dedicated ops  

- that can implement atomic swap  or bit set/clear 

 CSRs are mode sensitive 
- Can only be accessed by code in appropriate or higher privileged 

mode; accesses by lower privilege modes will trap 

 Many CSRs optional/ have optional fields/mode dependent 
- Accesses to non-existent CSRs will trap 
- Writes     to Read_Only    CSRs will trap 

- But writes to read_only fields in read/write CSRs are ignored 

- Accesses to optional        CSRs read zeroes, & (if RW) ignore writes 
- Note that optional vs. non-existent  
     can depend on architecture! 



CSR address space 

12 

CSR 
Address  

Machine-
Mode 

[9:8]=11  

Supervisor-
Mode 

[9:8]=01  

User- 
Mode 

[9:8]=00  
 Binary  Encoding 

[11:10]  [7:6]  

00    XX   0b00MM   xxxx  xxxx 
01   0X   0b01MM   0xxx  xxxx 
01   10  0b01MM   100x xxxx 
01   10 Debug only  0b01MM   101x xxxx 
01   11  Non Standard  0b01MM   11xx  xxxx 
10 ~11  0b10MM ~11xx  xxxx 
10   11 nonStandard  0b10MM   11xx  xxxx 

11 
(RO) 

~11 RdOnly  0b11MM ~11xx  xxxx 
  11 Non Standard        Rd Only  0b11MM   11xx  xxxx 

Addr[9:8]==10 currently reserved for Hypervisor CSs 

Read Only Non_Standard Debug 



CSRs and categories 

13 

Category CSR Name (some replicated/mode) 

FP CSRs  Exceptions,       Rounding_Mode,    Reg_State 

Information Vendor/ Architecture/Implementation/Thread_IDs  

Protection/ 

Translation 

Address_Translation_Protection,  

PhysMemProtection Config[ ]/Addr[ ] 
 

Trap Setup 
Status,               ISA+Extension,      Int/Excep_Delegation, 

Trap_Vector,      Int_Enable,            Cntr_Enab 

Trap Handling Exception_PC,  Scratch,        

Int_Pending       Trap_Cause/Value 

Counter/ 

Timers  

Cycles,              Inst_Retired,  

Time                  PerfmonCntr [ ] 

Counter Setup Perfmon Event selector[ ] 

Debug/ Trace

  

Control/Status/PC/Scratch 

Trigger_RegSelect/Data[ ] 



Memory Addressing: 
 Translation 

14 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



Memory Address Translation:  
Virtual Memory 

 S-mode adds virtual memory page mapping 
- Smallest unit of protection/mapping is 4 KB pages 

 Supports multiple User mode processes w/ separate 
address spaces (using Addr_Space_ID field in SATP CSR) 

 Page tables have multiple levels that are walked: 
- 2    levels for RV32 (Sv32) 
- 3,4 levels for RV64 (Sv39, Sv48) 
- 5,6 levels    RSVD    (Sv57, Sv64) 

 Page Table walk can stop at any level to create Superpages 
- e.g. for Sv39 2 MB if stopped at 2 levels  
- or                   1  GB if stopped at 1 levels 

 HW Page Table walk semantics specified in Priv Mode spec 
- But could trap to M-mode for software TLB refill 

 
 

15 



 Accessed/Dirty bits optionally HW          managed 
- Updates must be atomic w.r.t. permissions check 
- Complex to implement, so trap if       A/D  is clear 

 Global bit indicates mapping belongs  to all addr 
 spaces (e.g. Unix systems kernel pages 

 Page granularity permissions (User/Read/Write/eXecute) 
- (000 XWR indicates a non-leaf entry) 

 Virtual Addr width, Current ASID, and PageTable  root 
   controlled by SATP CSR 

RISC-V Page Table Entries 

(SV32 format shown) 

Mode 
63          60 59                                    44 43                                                                                                    0 

ASID Page Table Root Physical Page Number  
4                           16                                                                     44 

16 

Lo
ca

l 

(SV64 format shown) 



More control: Memory Fences 

 S-mode implements SFENCE.VMA instruction to 
synchronize updates to memory data structures 

- All page table levels, or just those corresponding to an addr 
- All address spaces,    or just a specific address space (not global) 

 

 Generalization of TLB flush on other architectures 
 

 Guarantees that all prior stores are ordered before all 
subsequent implicit references in the instruction stream 
 

 Affects only the local hart 
- Synchronization with other harts requires IPIs 

 
 

 
 

 
 

17 



Memory Addressing: 
Protection 

18 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



RISC-V Virtual Memory Protections 

 Standard RWX permissions configurable for every page 
- Supports X-only pages 
- W & ~R combination reserved 

 By default, S-mode can’t access user pages 
- Helps detect OS/driver bugs 
- Still need ability to read user memory, e.g. on system call 
- Set “Supervisor Access to User Memory” (SUM) bit in sStatus to 

read user memory, then turn it off again 
- S-mode cannot execute from U-mode pages even if SUM=1 

 Similarly, S-mode can’t read execute-only pages 
- Set sStatus “Make eXecutable Readable” MXR bit to override 

- Useful for illegal-instruction trap handlers 

 S-mode can enable/disable VM and choose page-table 
depth in SATP register 

 
 

 

 
 

19 



RISC-V Physical Memory Protection Unit 

 Optional new feature in v1.10 
 Makes S/U-modes have no permissions by default 
 Grants R/W/X permissions to up to 16 PMP regions 

- Naturally aligned 2^N-byte regions (N>=2) 
- Or use adjacent PMP regs to form base/bounds region 

 PMPs can be locked 
- Affects M-mode also 
- Only a reset can unlock 

 The fine print:  
- If VM enabled, VM (& page faults) occur before PMP checks 
- Useful for untrusted S-Mode 

 
 

20 



Physical Memory Attributes 

 RISC-V systems have the concept of Physical Memory 
Attributes:  platform and implementation specific 

- Maps access to a bus transaction type, or an error 

 PMA is dedicated HW that maps specific address 
ranges to certain access attributes, e.g. 

- Access widths allowed  (e.g. 1/2/4/8/16/64B) 
- Alignment restrictions  (e.g. can’t cross 2^x byte boundary) 
- Idempotency                 (enabling speculation) 
- Ordering          (Strong/Weak per Channel) 
- Cacheability                     (incl Wt Thru, Wt Combining, etc) 
- Priority                       (e.g. high/low if conflicting) 
- Atomicity allowed    (none, swap, logical, arithmetic) 
- Allowed access modes (M/S/U/debug) 

 Some attributes could be configurable 
21 



Trap Handling: 
Exceptions and Interrupts 

22 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



Interrupts vs Exceptions 

 Exceptions: Synchronous events 
- Synchronous: caused by a specific instruction execution 

 Interrupts: Asynchronous events  
- not caused by an inst: I/O, timer, SW (from another hart) 

 Both handled (almost) identically by trapping: 
- xTVEC CSR  holds handler address 

- Interrupts optionally vector to xTVEC+4*xCause 

- xI/EDELEG CSRs: select mode to trap into (next slide) 
- xCause CSR (x=new mode) saves cause ID 

-  MSB: interrupt vs. exception, LSBs: interrupt /exception ID code 
- xTVAL CSR  saves additional information about cause  

- This could be an illegal address, or illegal opcode (not for int) 
- xEPC CSR saves return Program Counter 

- could be next instruction (interrupts) or same inst (enabling retry) 
- xSTATUS CSR saves curr Mode/IntEn bits 

- xSTATUS[IntEn] cleared 
23 

Where 

to trap 

Reason 

for trap 

How to   

return 

from trap 

Mode to 

trap into 

Trap setup 

Trap handling 



Trap Setup 
Interrupt/Exception Handler Delegation 

 Traps always sent to M-mode, but… 
 Can be delegated to lower priv level, reducing overhead 

- Never to a less privileged mode than the one that trapped! 
 

 Bits in delegation CSR send traps to next lower priv level 
- m[i/e]deleg: MS (or MU if no S-mode  & N_extension) 
- s[i/e]deleg:  SU (if delegated to S-mode & N_extension) 

 

 Int Delegation occurs only if corresponding enable bits 
set (<x>ie CSR) 

- But enable bit used only for delegated (higher mode) 
- Exceptions are always enabled 

 Interrupts that trap set corresponding <x>ip CSR bit 

24 



Trap Handling 
Interrupt/Exception Causes 

25 

Trap 
code[62:0] 

Exception  (Cause[MSB]=0) Interrupt (Cause[MSB]==1) 

0 Instruction addr misaligned User            Software Interrupt 

1 Instruction access fault Supervisor Software Interrupt 

2 Illegal instruction Reserved 

3 Breakpoint Machine     Software Interrupt 
4 Load address misaligned User                  Timer Interrupt 
5 Load access fault Supervisor       Timer Interrupt 
6 Store/AMO addr misaligned  Reserved 

7 Store/AMO access fault Machine          Timer Interrupt 

8 Environment call User             External Interrupt 
9 

 Reserved 
Supervisor  External Interrupt 

10 Reserved 
11 Machine      External Interrupt 
12 Instruction page fault 

Reserved 
13 Load page fault 

14 Reserved 
15 Store/AMO page fault 

>=16 Reserved Reserved 

• <x>cause CSR indicates which interrupt/exception occurred 
• Corresponding bit is set in <x>E/IP CSR 

Lo
ca

l 
Ex

te
rn

al
 

Interrupts   > Exceptions 

M-mode     > S-mode > U-mode 

Pending[N] > Pending[M] if N>M 

 

Special case: Timer & SW 

interrupt priorities swapped! 

Trap Priority for simultaneous interrupts/exceptions: 



Interrupts 

26 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



Platform-Level Interrupt Overview 

27 

PLIC 

U Timer 
Software 

S Timer 
Software 

M Timer 
Software 

External 
Interrupt 1 

External 
Interrupt 2 

Local Interrupts Global Interrupts 

External Hart 0 

Hart 1 

U Timer 
Software 

S Timer 
Software 

M Timer 
Software 

External 
Interrupt N 



RISC-V Interrupt Source Categories 

 Global (External) Interrupts 
- Routed to harts via Platform-Level Interrupt Controller (PLIC) 
- Actual source determined by read of PLIC MMIO CSR 

 Local Interrupts 
- Directly connected to one hart, independent of other harts 
- Cause determined directly from <x>cause CSR 
- Only two standard local interrupts (software, timer) 

 Any interrupt can target any M/S/U mode 
- Except for priority during simultaneous interrupts,  
 handling is identical 

28 



External Interrupts 

 Inputs from a Platform-Level Interrupt Controller (PLIC) 
- PLIC targets hart based on hart interrupt threshold & enable, 

and interrupt priority 

 Interrupts can target multiple harts simultaneously 
- Harts must arbitrate to determine which services it 
- E.g. by racing to read MMIO mapped interrupt source CSR 

 PLIC labels each output with a privilege mode 
- Which can be handled differently using delegation 

 Interrupts cleared via MMIO mapped LD/ST to PLIC 
 Software can inject SEIP and UEIP interrupts to support 

virtualizing the PLIC by writing CSR directly 
 

29 



Software Interrupts 

 Software interrupt are how harts interrupt each other 
- Mechanism for inter-hart interrupts (IPIs) 
 

 Setting the appropriate <x>SIP bit in another hart is 

performed by a MMIO write  
- But a hart can set its own <x>SIP bit if currmode >= <x> 
 

 App/OS performs inter-hart ints only via ABI/SBI calls  
- Destination virtual hart might be descheduled 
- Interrupts virtualized by M-mode software using MSIP 

30 



Timer Interrupts 

 Single M-mode 64b real-time HW timer per system 
 Single M-mode 64b  Time  comparator   per hart (logically) 

 NOT CSRs, but MMIO addressed 
- Must count at a fixed rate, regardless of core clock or power 
- mtime >= mtimecmp causes hart’s  MTIP bit to be set 

 M-mode responsible for virtualizing the single HW timer 
and hart comparator for lower-privilege modes 

- CSR reads by U-mode will trap & be handled by M-mode 
 

 STIP and UTIP CSR bits are handled by M-mode 

- ABI/SBI calls to set up timer 
- M-mode software writes/clears STIP,UTIP 

 

31 



Counters:  
Time and Performance 

32 

 Why a Privileged Architecture? 
 Profiles 
 Privileges and Modes 
 Privileged Features 

- CSRs 
- Instructions 

 Memory Addressing 
- Translation  
- Protection 

 Trap Handling 
- Exceptions 
- Interrupts 

 Counters 
- Time 
- Performance 



Timers and Counters 

33 

 RISC-V has several architected Timers and Counters 
implemented (mostly) as CSRs 

 All are 64 bits (split into 2 CSRs for RV32 only) 
 

- Real Time Clock  Time, described in Timer Interrupt slide 
- U/S-mode read of CSR traps to M-mode, which does MMIO read 

 

- Instructions_Retired InstRet Counter 
- M-mode RW, U-mode RO, used for RDINSTRET pseudo-instructions 

 

- Cycles Cycle Counter 
- M-mode RW, U-mode RO, used for RDCYCLE pseudo-instructions 

 

-  0..29 HW Performance Monitors mhpmcounters 
- each w/corresponding HPMEvent to select what to count 



Timer/Counter protections 

34 

 Easily accessible timers have issues 
- Lack of reproducibility 
- Side channel security attacks (Meltdown, Spectre…) 

 <x>CounterEn CSRs enables access to the counters 
- 1 bit per counter (Time/Cycle/InstRet/HPMCounter[]) 
- Accessing <x>timer/counter in a mode<x will trap if 

corresponding  bit in <x>CounterEn is clear for x<y  
- Any bit may be optionally hardwired to zero 

 

 



Wrap Up 

35 



Privileged Architecture is Stable 

 Latest version is v1.11 draft  
 

 keeps compatibility with v1.9.1 for       
machine-mode-only implementations 

 

 Future releases should be compatible with            
v1.10 for supervisor ISA, too 

 

 Adds draft Hypervisor support 
 

 Caveat: these are proposals;  
   not yet ratified by Foundation 

 
 

36 



Implementation Status 

 Spike and UCB Rocket-Chip conform to v1.11 
 Linux port is upstreamed and conforms to v1.11 

- works with Spike/Rocket 

 QEMU port is upstreamed and conforms to v1.11 
 Upstream GCC and binutils ports are compatible 

37 



Questions? 

38 

Specs available at 
https://github.com/riscv/riscv-isa-manual 



Backup 

39 



<x>Status CSR 

40 

S

D 

SXL UXL T

S

R 

T

W 

T

V

M 

M

X

R 

S

U

M 

M

P

R

V 

XS FS 

 

 

 

63                                            35 34 33 32                             22  21 20 19 18 1716:15 14:13 12      8   7              4  3             0 

S-mode XLEN 
U-mode XLEN 

Extension state is dirty 
 
 

MXR Allow Ld from pages with RX=01 
SUM Allow SMode accessest to U-mode pages 
MPRV                      Use priv mode in MPP for Ld/St 

Previous 
Privilege 
Modes  
M: MSU 
 S:    SU 

TSR    Trap if SRET is executed in S-mode 
TW     Trap if WFI in S-mode exceeds timeout 
TVM   Trap on S-mode execution of SFENCE.VMA 

Summary (other) 
0= All Off 
1= No Dirty/Clean, some on 
2=No dirty, Some clean 
3=Some dirty 

FP 
0= Off 
1= Initial 
2=Clean 
3=Dirty 

Per Mode 
Int Enable 
 

Previous   Current 

SV64 only 

(SD moves to 
 bit 31 for SV32) 

<x>PP, <x>PIE, <x>IE  
read as zero if curr_mode<x  

In U-mode 
read as zero 

In S,U-mode 
read as zero 

S 
D 
 

M – S U  

       IE 
 M  – S 

PP 

M – S U  

       PIE 



CSRs, Privileged Modes, & Options 

41 

       CSR 
Category  CSR Name Comments M-mode S-mode Umode 

Floating-Point CRs 
Accrued Exceptions X(DF) 

Dynamic Rounding Mode X(DF) 

Ctl & Status Reg (frm + fflags) X(DF) 

Information 

Vendor ID                                  (o) Encoded JEDEC ID  X 

Architecture ID                          (o) MSB==Commercial X 

Implementation ID                     (o) X 

Hardware_thread_ID Hart 0 must exist 

Trap Setup 

Status                                       (S) X  HBX (H) X 

ISAs and Extensions X 

Exception_Delegation              X (SN) BX (H,N) 

Interrupt_   Delegation             X (SN) BX (H,N) 

Interrupt Enable                        (R) X BX (H) X (UN) 

Trap_Vector_Base_Address    (z) X BX (H) X (UN) 

Counter Enable                        (Z) X X 

Trap Handling 

Scratch Register For Trap handlers X BX (H) X (UN) 

Exception_Program_Counter X BX (H) X (UN) 

Trap_Cause                          (P,Z) X BX (H) X (UN) 

Trap_Value                               (Z) X  HBX X (UN) 

Interrupt pending                      (R) X  BX (H) X (UN) 

Addr Translation & Protection(RZ)   BX (H) 

Protection/Translation 

 
Phys Mem Prot Config[3:0]      (on) X 

Phys Mem Prot Addr[15:0]       (on) X 

Counter/Timers 

Cycle_counter For RDCYCLE    inst X X 

Time For RTIME           inst X X 

Instr-retired_counter For RDINSTRET inst X X 

Perfmon counters[31:3]            (Zn) X X 

Upper_32b_of_cycle X (I) X (U32) 

Upper_32b_of_time X (I) X (U32) 

Upper_32b_of_instret X (I) X (U32) 

Upper_32b_of_perfmon[31:3]  (Z) X (I,n) X(U32n) 

 Counter Setup Perfmon Event selector[31:3]  (Z) X(n) 

Debug/Trace 

Debug/Trace Trigger Reg Select X 

Debug/Trace trigger data Reg[3:1] X 

Debug Control/Status X 

Debug PC X 
Debug Scratch Reg X 

(DF) Optional unless D/F extension implemented 
(UN) Exists only in Umode & N-extension implemented 
(U32)Exists only in Umode & RV32I architecture 
(n)   Exact number is implementation dependent 
(I)    exist only if RV23I architecture 
(R)   Single register with restricted view 
(P)  Only bits corresponding to <= curr mode are visible 
(H)  Swapped with background CSR on VM entry/exit 
(o)  Optional (Read 0 if unimplemented) 
(SN)Exists only if Smode | N-extension implemented 
(z)   Some bits may be hardwired RdOnly 
(Z)  May be hardwired RdOnly zero 
 
 
 
 
* = optional (read as zero) 
Types of CSR fields: 
 - WIRI (Reserved)  Writes ignored,     Reads ignored 
 - WPRI (Reserved) Writes preserved, Reads ignored 
 - WLRL                     Write Legal,            Read Legal 
 - WARL                     Write Any,              Read Legal 
  
H= new CSR version added for Hypervisor extension 
B = background CSR added for Hypervisor extension 

 



Interrupts   > Exceptions 
M  > S > U-mode 
Pending[N] > Pending[M] 
                         if N>M 

      Exception: Timer       
& SW interrupt 

priorities swapped! 

Interrupt/Exception Handler Delegation 

42 

M 0 
1 

S 

U 

0 
1 

Treat as 0 if 
no S-mode or 
no U-mode or 
no N_extension 

M 

S 

PEND 

Deleg 

Treat as 1  if S-mode 
unimplemented 

Deleg 
P

rio
rity Lo

gic 

M 

S 

U 

Int 
Enable 

Global 
Enables 

New 
Mode 

Cause 

Trap 

Global Enable M = currMode<M +  currMode==M & Mstatus.MIE 
Global Enable  S   = currMode<S  +  currMode== S  & Mstatus.SIE 
Global Enable  U  = currMode<U +  currMode== U  & Mstatus.UIE 

Interrupts only 
Exceptions always enabled 

Exception 
or 

Interrupt 



Interrupt Pending/Enable CSRs <x>ip,ie 

 <x>ip reflects pending status of interrupts for hart 
- Enabled by corresponding bits of <x>ie  with same per/mode visibility 
- In addition to global interrupt enables in <x>status for each privilege mode 

 Separate ints for each priv level (M/S/U), directed to M-mode 
- M-mode can delegate to S-mode and U-modes 
- Higher privilege modes override lower privilege modes 

 Opt. User interrupt handling (“N”) feature when U-mode present 
 Interrupts always disabled for privimodes lower  
    than current mode; always enabled for privilege 
    modes higher than current mode 

 

43 

External (from PLIC) Local Timer Local Software 

(Add Non-Standard 
Local Interrupts Here) 

(not visible in 
S/U modes) 

(only visible if 
N-extension) 

(not visible in 
U mode 

(WIRI) Local Standard Rsvd MEIP (WIRI) SEIP UEIP MTIP (WIRI) STIP UTIP MSIP (WIRI) SSIP USIP 

XLEN-12                                     4                               1          1           1           1           1           1          1           1           1           1           1           1 

XLEN-12                 16 15                                         12     11         1 0          9           8           7           6          5           4           3           2          1           0 



PLIC Block Diagram 

Max 
Max 

Max 

Max 

Priority 

& 

assoc. 

ID for 

Hart#N 

> 
> 

> 
> 

hart#n Int ID 

hart#n  ExtIntPend 

hart#0 Int ID 

hart#0  ExtIntPend 

Hart#0 

Priority 

Hart#n 

Priority 

foreach hart { 

    find highest priority enabled interrupt 

    if(interrupt_priority>hart_priority) { 

         present interrupt[highest] to hart 

        } 

   } 

In
t 

S
rc

 

In
t 

G
a
te

w
a
y
 In

t 
ID

 

Int Priority 

Int Pend 

Hart#n 

Int Enab 

In
t 

S
rc

 

In
t 

G
a
te

w
a
y
 In

t 
ID

 

Int Priority 

Int Pend 

Hart#n 

Int Enab 

converts edge/level/polarity, 

etc to common format Replicated for 

each hart 

Replicated for 

each int source 44 



Hypervisor mode 

 Feedback led us to HW support for Type-2 hypervisors (like KVM) 
- Can also support type-1 

 Hypervisors run in S-mode 
 Guests run in virtualized (V) S and U modes 

- Major difference is 2-level page table walk 
- Certain operations can be inhibited or trap (individually) 

- Execution of  WFI if the wait exceeds some limit can be trapped 
- SRET ,FENCE.VMA, SATP and counters CSR accesses can be trapped 

- But CYCLE and INSTRET will still count 

- Force translation to use supervisor previous priv level 

- Additional bits added to STATUS CSR 
- Previous Virtualization mode 
- Translation fault level 

- Some control bits interpreted differently: SPRV, SPV, SPP 

 Vmode changes cause CSR swap/selection w/background versions 
- Use     HSTATUS, HEDELEG, HIDELEG, HTVAL 
- Swaps SSTATUS, SIE,SIP, STVEC,   SSCRATCH, 
    SCAUSE,  SEPC,    STVAL,   SATP  

45 


